Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-(Diphenylphosphinyl)-2-(1-hydroxycyclohexyl)ethene

Bin Yu, Xiao-Qing Wang,* Guang-Qiu Shen and **De-Zhong Shen**

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail: xqwang@tsinghua.edu.cn

Received 11 May 2007; accepted 12 May 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.098; data-to-parameter ratio = 15.8.

The molecule of the title compound, $C_{20}H_{23}PO_2$, displays an E configuration about the C=C bond. The two phenyl rings are nearly perpendicular to each other with a dihedral angle of 80.09 (8)°. Intermolecular $O-H \cdots O$ hydrogen bonding and π - π stacking between parallel benzene rings of adjacent molecules, with a iperpendicular distance of 3.4928 (3) Å, help to stabilize the crystal structure.

Related literature

For general background, see: Brunner & Limmer (1991). For synthesis, see: Niu et al. (2007).

Experimental

Crystal data

C ₂₀ H ₂₃ O ₂ P	V = 1763.6 (6) Å ³
$M_r = 326.35$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 6.0174 (15) Å	$\mu = 0.16 \text{ mm}^{-1}$
b = 10.452 (2) Å	T = 295 (2) K
c = 28.043 (5) Å	$0.4 \times 0.3 \times 0.2 \text{ mm}$
$\beta = 90.81 \ (2)^{\circ}$	

Data collection

Bruker P4 diffractometer Absorption correction: none 4757 measured reflections 3293 independent reflections 1621 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	209 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.25 \text{ e } \text{\AA}^{-3}$
3293 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.055$

3 standard reflections

every 97 reflections

intensity decay: none

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2B\cdotsO1^{i}$	0.82	2.01	2.813 (3)	166

Symmetry code: (i) x - 1, y, z.

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (No. 50590402) for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2254).

References

Bruker (1997). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.

Brunner, H. & Limmer, S. (1991). J. Organomet. Chem. 417, 173-180.

Niu, M. Y., Fu, H., Jiang, Y. Y. & Zhao, Y. F. (2007). Chem. Commun. pp. 272-274

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o2973 [doi:10.1107/S1600536807023422]

(E)-1-(Diphenylphosphinyl)-2-(1-hydroxycyclohexyl)ethene

B. Yu, X.-Q. Wang, G.-Q. Shen and D.-Z. Shen

Comment

Alkenylphosphine oxides are useful compounds in numerous synthetic transformations. For example, heteroatom nucleophiles of primary ls@zapatalite:/e/xu2254\$ and secondary amines readily add to the olefinic bond in alkenylphosphine oxide to give useful bifunctional adducts, which allow further synthetic elaboration (Brunner & Limmer, 1991).

The molecular structure of (I) is shown in Fig. 1. The molecule displays an E-configuration about C=C bond. Two phenyl rings are nearly perpendicular to each other with a dihedral angle of $80.09 (8)^{\circ}$.

Intermolecular O–H···O hydrogen bonding (Table 1) is observed in the crystal structure of (I). The crystal structure is further stabilized by π - π stacking between C1-benzene and C1ⁱ-benzene [symmetry code: (i) 1 - x, 1 - y, 1 - z], inter-planar separation being 3.4928 (3)Å (Fig. 2).

Experimental

A mixture of diphenylphosphine oxide (5 mmol), 1-ethynyl-1-cyclohexanol (7.5 mmol), CuI (0.5 mmol), ethylenediamine (EDA)(0.75 mmol) in 10 ml DMSO under N₂ atmosphere was heated at 333 K for 18 h. The resulting solution was cooled to room temperature, and then 10 ml chloroform and 10 ml brine were added to the solution. The organic layer was washed with brine (10 ml) and dried with anhydrous Na₂SO₄. After filtration, the filtrate was concentrated *in vacuo* to give a pale yellow semisolid. The crude product was then purified by silica gel column chromatography, EtOAc-hexane (1:1) as the eluent. The single crystals of (I) were obtained from the EtOAc-hexane solution (Niu *et al.*, 2007).

Refinement

H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.97 Å (methylene) and O—H = 0.82 Å, and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figures

Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids.

Fig. 2. The packing of (I), showing the hydrogen bonding (dashed lines).

$(E) \hbox{-} 1 \hbox{-} (Diphenyl phosphinyl) \hbox{-} 2 \hbox{-} (1 \hbox{-} hydroxycyclohexyl) ethene$

Crystal data	
C ₂₀ H ₂₃ O ₂ P	$F_{000} = 696$
$M_r = 326.35$	$D_{\rm x} = 1.229 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 25 reflections
<i>a</i> = 6.0174 (15) Å	$\theta = 4.8 - 11.1^{\circ}$
<i>b</i> = 10.452 (2) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 28.043 (5) Å	T = 295 (2) K
$\beta = 90.81 \ (2)^{\circ}$	Prism, colorless
V = 1763.6 (6) Å ³	$0.4\times0.3\times0.2~mm$
Z = 4	

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.055$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 295(2) K	$h = -1 \rightarrow 7$
ω scans	$k = -12 \rightarrow 1$
Absorption correction: none	<i>l</i> = −33→33
4757 measured reflections	3 standard reflections
3293 independent reflections	every 97 reflections
1621 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained

$wR(F^2) = 0.098$	$w = 1/[\sigma^2(F_0^2) + (0.001P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{max} < 0.001$
3293 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

F 1		1.	1	• ,		. 1		. 1.	1 ,		182	2
Fractional	atomic	coordinates	and	isotroi	nc or i	2auivalent	t isotroi	nc dis	nlacement	narameters	$(A^{-}$	17
1				1001.00			1001.01		proceentern		(/

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
P1	0.40018 (14)	0.51414 (7)	0.63461 (3)	0.0457 (2)
01	0.6039 (3)	0.58117 (18)	0.65258 (6)	0.0524 (5)
O2	-0.1924 (3)	0.77017 (19)	0.59673 (7)	0.0590 (6)
H2B	-0.2480	0.7239	0.6170	0.071*
C1	0.4511 (5)	0.4185 (3)	0.58228 (9)	0.0427 (7)
C2	0.2967 (5)	0.3344 (3)	0.56462 (10)	0.0621 (9)
H2A	0.1644	0.3223	0.5807	0.075*
C3	0.3346 (6)	0.2672 (3)	0.52318 (11)	0.0724 (11)
H3A	0.2274	0.2113	0.5112	0.087*
C4	0.5315 (6)	0.2833 (3)	0.49970 (11)	0.0646 (9)
H4A	0.5571	0.2378	0.4718	0.077*
C5	0.6881 (5)	0.3646 (3)	0.51669 (11)	0.0644 (9)
H5A	0.8218	0.3744	0.5008	0.077*
C6	0.6478 (5)	0.4333 (3)	0.55804 (10)	0.0568 (9)
H6A	0.7547	0.4901	0.5696	0.068*
C7	0.2825 (5)	0.4049 (3)	0.67727 (9)	0.0443 (7)
C8	0.4023 (5)	0.2988 (3)	0.69112 (11)	0.0659 (10)
H8A	0.5410	0.2837	0.6780	0.079*
С9	0.3183 (7)	0.2141 (4)	0.72434 (12)	0.0816 (11)
H9A	0.4011	0.1430	0.7336	0.098*
C10	0.1129 (7)	0.2351 (4)	0.74366 (11)	0.0773 (12)
H10A	0.0563	0.1782	0.7659	0.093*
C11	-0.0072 (6)	0.3394 (4)	0.73009 (11)	0.0725 (10)
H11A	-0.1455	0.3540	0.7434	0.087*
C12	0.0741 (5)	0.4246 (3)	0.69656 (10)	0.0585 (9)

supplementary materials

H12A	-0.0110	0.4946	0.6871	0.070*
C13	0.1806 (5)	0.6189 (3)	0.61876 (9)	0.0468 (8)
H13A	0.0558	0.5841	0.6038	0.056*
C14	0.1824 (5)	0.7429 (3)	0.62682 (10)	0.0469 (8)
H14A	0.3121	0.7773	0.6399	0.056*
C15	-0.0060 (5)	0.8346 (3)	0.61683 (10)	0.0452 (7)
C16	0.0617 (5)	0.9337 (3)	0.57950 (10)	0.0585 (9)
H16A	0.1980	0.9755	0.5899	0.070*
H16B	0.0900	0.8909	0.5495	0.070*
C17	-0.1181 (5)	1.0336 (3)	0.57195 (11)	0.0700 (10)
H17A	-0.0682	1.0962	0.5489	0.084*
H17B	-0.2506	0.9928	0.5590	0.084*
C18	-0.1741 (6)	1.1005 (3)	0.61773 (12)	0.0817 (11)
H18A	-0.2938	1.1609	0.6119	0.098*
H18B	-0.0456	1.1480	0.6292	0.098*
C19	-0.2443 (5)	1.0046 (3)	0.65560 (11)	0.0751 (10)
H19A	-0.3834	0.9649	0.6459	0.090*
H19B	-0.2683	1.0491	0.6855	0.090*
C20	-0.0674 (5)	0.9015 (3)	0.66299 (10)	0.0588 (9)
H20A	0.0649	0.9403	0.6769	0.071*
H20B	-0.1218	0.8385	0.6854	0.071*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0464 (4)	0.0406 (5)	0.0503 (4)	0.0011 (5)	0.0049 (3)	-0.0005 (4)
01	0.0434 (12)	0.0539 (13)	0.0599 (12)	-0.0062 (11)	-0.0018 (10)	-0.0015 (11)
O2	0.0529 (13)	0.0498 (14)	0.0743 (14)	-0.0060 (12)	-0.0043 (12)	0.0101 (11)
C1	0.0474 (17)	0.0373 (16)	0.0435 (17)	-0.0005 (16)	0.0052 (14)	0.0026 (14)
C2	0.063 (2)	0.064 (2)	0.060 (2)	-0.011 (2)	0.0169 (18)	-0.0109 (19)
C3	0.078 (3)	0.070 (3)	0.070 (2)	-0.017 (2)	0.014 (2)	-0.020 (2)
C4	0.082 (3)	0.062 (2)	0.0500 (19)	0.010 (2)	0.0108 (19)	-0.0059 (18)
C5	0.058 (2)	0.076 (3)	0.060 (2)	0.008 (2)	0.0148 (18)	-0.001 (2)
C6	0.0515 (19)	0.061 (2)	0.0583 (19)	-0.0027 (18)	0.0055 (16)	-0.0047 (18)
C7	0.0497 (18)	0.0390 (18)	0.0443 (17)	-0.0005 (16)	0.0055 (15)	-0.0030 (14)
C8	0.071 (2)	0.063 (2)	0.065 (2)	0.015 (2)	0.0119 (18)	0.0115 (19)
C9	0.106 (3)	0.069 (2)	0.070 (2)	0.011 (3)	0.010 (2)	0.026 (2)
C10	0.104 (3)	0.076 (3)	0.052 (2)	-0.024 (3)	0.011 (2)	0.014 (2)
C11	0.069 (2)	0.090 (3)	0.059 (2)	-0.006 (2)	0.0199 (19)	0.004 (2)
C12	0.058 (2)	0.057 (2)	0.0607 (19)	0.0034 (19)	0.0092 (17)	0.0015 (18)
C13	0.0467 (19)	0.0422 (18)	0.0516 (18)	-0.0031 (16)	0.0022 (15)	0.0002 (15)
C14	0.0468 (18)	0.0454 (18)	0.0486 (17)	-0.0009 (16)	0.0074 (15)	0.0035 (16)
C15	0.0461 (18)	0.0363 (17)	0.0531 (18)	0.0013 (16)	0.0029 (15)	0.0011 (15)
C16	0.067 (2)	0.0463 (19)	0.063 (2)	0.0043 (18)	0.0169 (17)	0.0113 (17)
C17	0.083 (2)	0.056 (2)	0.071 (2)	0.012 (2)	0.0157 (19)	0.020 (2)
C18	0.103 (3)	0.046 (2)	0.097 (3)	0.020 (2)	0.016 (2)	0.008 (2)
C19	0.092 (3)	0.060 (2)	0.074 (2)	0.023 (2)	0.024 (2)	0.002 (2)
C20	0.074 (2)	0.051 (2)	0.0520 (18)	0.0087 (19)	0.0087 (17)	0.0001 (17)

Geometric parameters (Å, °)

P1—O1	1.4933 (18)	C10—H10A	0.9300
P1—C1	1.805 (3)	C11—C12	1.388 (4)
P1—C7	1.806 (3)	C11—H11A	0.9300
P1—C13	1.768 (3)	C12—H12A	0.9300
O2—C15	1.418 (3)	C13—C14	1.315 (3)
O2—H2B	0.8200	C13—H13A	0.9300
C1—C2	1.367 (4)	C14—C15	1.508 (4)
C1—C6	1.382 (3)	C14—H14A	0.9300
C2—C3	1.379 (4)	C15—C20	1.521 (4)
C2—H2A	0.9300	C15—C16	1.532 (3)
C3—C4	1.374 (4)	C16—C17	1.516 (4)
С3—НЗА	0.9300	C16—H16A	0.9700
C4—C5	1.350 (4)	C16—H16B	0.9700
C4—H4A	0.9300	C17—C18	1.504 (4)
C5—C6	1.388 (4)	C17—H17A	0.9700
С5—Н5А	0.9300	С17—Н17В	0.9700
С6—Н6А	0.9300	C18—C19	1.524 (4)
С7—С8	1.376 (4)	C18—H18A	0.9700
C7—C12	1.388 (4)	C18—H18B	0.9700
C8—C9	1.386 (4)	C19—C20	1.527 (4)
C8—H8A	0.9300	C19—H19A	0.9700
C9—C10	1.374 (4)	С19—Н19В	0.9700
С9—Н9А	0.9300	C20—H20A	0.9700
C10—C11	1.360 (4)	С20—Н20В	0.9700
O1—P1—C13	113.65 (13)	C14—C13—P1	124.2 (3)
O1—P1—C1	112.72 (12)	C14—C13—H13A	117.9
C13—P1—C1	105.86 (13)	P1—C13—H13A	117.9
O1—P1—C7	113.62 (12)	C13—C14—C15	126.1 (3)
C13—P1—C7	105.04 (14)	C13—C14—H14A	116.9
C1—P1—C7	105.15 (12)	C15—C14—H14A	116.9
C15—O2—H2B	109.5	O2-C15-C14	111.1 (2)
C2—C1—C6	118.4 (3)	O2—C15—C20	110.9 (2)
C2—C1—P1	121.9 (2)	C14—C15—C20	109.0 (2)
C6—C1—P1	119.6 (2)	O2—C15—C16	105.4 (2)
C1—C2—C3	120.9 (3)	C14—C15—C16	110.5 (2)
C1—C2—H2A	119.6	C20-C15-C16	109.9 (2)
C3—C2—H2A	119.6	C17—C16—C15	111.4 (2)
C4—C3—C2	119.7 (3)	С17—С16—Н16А	109.3
С4—С3—НЗА	120.1	C15—C16—H16A	109.3
С2—С3—НЗА	120.1	C17—C16—H16B	109.3
C5—C4—C3	120.7 (3)	C15—C16—H16B	109.3
C5—C4—H4A	119.7	H16A—C16—H16B	108.0
C3—C4—H4A	119.7	C18—C17—C16	111.6 (3)
C4—C5—C6	119.4 (3)	C18—C17—H17A	109.3
С4—С5—Н5А	120.3	С16—С17—Н17А	109.3
С6—С5—Н5А	120.3	C18—C17—H17B	109.3

supplementary materials

C1—C6—C5	120.9 (3)	C16—C17—H17B	109.3
C1—C6—H6A	119.5	H17A—C17—H17B	108.0
С5—С6—Н6А	119.5	C17—C18—C19	110.9 (3)
C8—C7—C12	118.8 (3)	C17—C18—H18A	109.5
C8—C7—P1	119.2 (2)	C19-C18-H18A	109.5
C12—C7—P1	122.0 (2)	C17—C18—H18B	109.5
С7—С8—С9	120.7 (3)	C19-C18-H18B	109.5
С7—С8—Н8А	119.7	H18A—C18—H18B	108.0
С9—С8—Н8А	119.7	C18—C19—C20	111.0 (2)
С10—С9—С8	120.1 (4)	C18—C19—H19A	109.4
С10—С9—Н9А	119.9	С20—С19—Н19А	109.4
С8—С9—Н9А	119.9	C18—C19—H19B	109.4
С11—С10—С9	119.7 (3)	С20—С19—Н19В	109.4
C11-C10-H10A	120.2	H19A—C19—H19B	108.0
C9—C10—H10A	120.2	C15—C20—C19	112.7 (2)
C10-C11-C12	120.9 (3)	C15—C20—H20A	109.0
C10-C11-H11A	119.6	C19—C20—H20A	109.0
C12—C11—H11A	119.6	С15—С20—Н20В	109.0
C7—C12—C11	119.8 (3)	С19—С20—Н20В	109.0
C7—C12—H12A	120.1	H20A-C20-H20B	107.8
C11—C12—H12A	120.1		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O2—H2B····O1 ⁱ	0.82	2.01	2.813 (3)	166
Symmetry codes: (i) $x-1$, y , z .				

Fig. 1

